
ESD-TR-71-342

A GENERALIZED COMPACTIFYING
GARBAGE COLLECTOR
(A COMPUTER STORAGE MANAGEMENT ALGORITHM)

Ben Wegbrei t

August 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virgfnia 22209

ARPA Order No. 952

Approved for public release,:
distribution unlimited.

(Prepared under Contract No. F19628-68-C-0379 by Harvard University,
Cambridge, Massachusetts 02138.)

..

■■;■;■' ■ ■■ ■•■ ■..■.:■ ■■ ■

■ '' ::'"■;;"::; ' ■■',|' -- ■■

->

■ , : .

^.■; ■■;,.".■■■

■ . v ■

„ ...•■.■>.■•..■..■■■ .1 .. . ■....■..■.■. ^r,;
f ^ T -
— r ,'-' ■ * _ ,

■ ■ ■ ■ ■■■■!■ . . ■ /

\~' S . ' ■y'l^■■--;-: v-V'W^

...

-' - ' ■

. ■:':'-' : Li' - •; -^

■.. . ■:' ■■■■.:,: ■■...■..;■:.

/ ■ ■ , . ., ■ , ■ , ^ ■ ■ ■■ ■. :■.-■■■.-:■:?, .-r -':-.': \:, ■ ■.-:■;..;. .-. ^■.■.:..--. - .
;.;■!. ■■■

,..■■■.■■■

:■, ■ ■ ■ i ■ ' ■ ■ ■'..■;

 .■*.■•:;■■■

■ ■■.■.■.■■;■■■■■■ ■■■ . ■;.,.,. ■ ■ ■ ' ■ ■. ■, i'J ;.;,■.
■,■.;.■■■.■ ■■■■.. .(■■■.:..■ ..■- :<....)::■'': ■' .

:■;■■ , .

•'SyfV.trSaiS:

a. J-, r W

:.-'~'\ r'.yr

■ ■■■■.'■..
- ■Vi'.- ~'

,.:.-■■ ■ • ■

mm:m
'::ü:

■

". - i

-
- . PIMiSliilii

s

—;; .■.,.■.■■;

■.:■,-■.-■; ; ■

;...
. : . 'mgmff ■ ■ - ■

■;i.-;,i\«: .-i" '

■^--: ■■:} ,-,■ ,;. ■r : > :■

■ • ■ ■...■■ ,

■V '' -

; ■

mm

, ■ _ - -.I .r r .S,'r,_ r .-T.T. = _. .:

i
m^ f /;•

■. ■ ■■■:■■■, '.:,■ ■ ...

I li.

i^yr;-

S;l

■ 1

..i rnmt IM.-* ■•^If'E.t.'-ji 1

ESD-TR-71-342

A GENERALIZED COMPACTIFYING
GARBAGE COLLECTOR
(A COMPUTER STORAGE MANAGEMENT ALGORITHM)

Ben Wegbreit

August 1971

DEPUTY FOR COMMAND AND MANAGEMENT SYSTEMS
HQ ELECTRONIC SYSTEMS DIVISION (AFSC)
L. G. Hanscom Field, Bedford, Massachusetts 01730

Sponsored by: Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

ARPA Order No. 952

Approved for public release:
distribution unlimited.

(Prepared under Contract No. FI9628-68-C-0379 by Harvard University,
Cambridge, Massachusetts 02138.)

i VtMZ&ftätrwpnm*

FOREWORD

This report presents the results oi. research conducted by Harvard
University, Cambridge, Massachusetts in support of ARPA Order 952 under
contract F19628-68-C-0379. Dr. John B. Goodenough (ESD/MCDT-1) was the
ESD Project Monitor.

This technical report has been reviewed and is approved.

[onel, USAF
Director, Systems Design & Development
Deputy for Command & Management Systems

UNCLASSIFIED
Security Clattification

DOCUMENT CONTROL DATA -R&D
(Steutlly clmttlllcmllon ot till; body ol mbtlncl mnd Indeiilng mnnolmllon mux be tntmrod wh»n lh» onrall rtpoti It clmttllltd)

I. ORIGINATING ACTIVITY CCorporal« autfior; 2«. REPORT SECURITY C UASSIFIC A TICK

Harvard University
Center for Research in Computing Technology
Cambridge. Mass. 02[38

UNCLASSIFIED
2b. GROUP

N|/A
3. REPORT TITLE

A GENERALIZED COMPACTIFYING GARBAGE COLLECTOR
(A COMPUTER STORAGE MANAGEMENT ALGORITHM)

4. DESCRIPTIVE NOTES fTVp* of »port and Inelu*lv0 <*■<•«;

None
B. AUTHORIS) (Flfl nmim, mlddl» Initial, fast nam*>

Ben V/egbreit

8. REPORT DATE

August 1971
Sa. CONTRACT OR GRANT NO.

FI9628-68-C-0379
b. PROJECT ur>.

7m, TOTAL NO. OF PAGES

22
7b. NO. OF REFS

8
«a. ORIGINATOR'S REPORT NUMBERIS)

ESD-TR-71-342

9b. OTHER REPORT NOIS) (Any other number* that may be antlgned
thle report)

10. DISTRIBUTION STATEMENT

Approved for public release; distribution unlimited.

II. SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Deputy for Command and Management Systems
Hq Electronic Systems Division (AFSC)
L G Hosiscom Field, Bedford, Mass. 01730

13. ABSTRACT

A technique for compactlfying garbage collection is presented. The
method is applicable to very general classes of nodes, works even
when pointers point Into the middle of nodes, and preserves arbi-
trarily complex re-entrant pointer structures.

DD ^..1473 UNCLASSIFIED
ct*,. r^i - --i i1;-.-»i ~-

lINnLASSIFTF.n
Security CUssiücation

KEY WORDS

Storage compactiflcatlon
Garbage collection
Compactlfylng garbage collection
Storage allocation
List processing

LINK A

HOL«

UNCLASSiriED
S#riirltv riassiflcation

ABSTRACT

A technique for compactifying garbage collection is presented. The method

is applicable to very general classes of nodes, works even when pointers point

into the middle of nodes, and preserves arbitrarily complex re-entrant pointer

structures.

ill

A GENERALIZED COMPACTIFYING GARBAGE COLLECTOR *

Introduction

Languages providing dynamic storage allocation usually provide for the

automatic reclamation of unused storage by garbage collection (e.g., see

McCarthy, 1962).

In its simplest form, a garbage collector reclaims unused storage while

leaving objects in use in situ, i.e., in the same memory locations. Hence, the

storage in use eventually becomes scattered throughout memory. Under com-

mon conditions, this has deleterious consequences. If blocks of storage may

be required in various sizes, the fragmentation of storage may produce a situ-

ation where there is no single free block large enough to satisfy some request

although the total amount of free storage is great enough. A solution to this

problem is compactifying garbage collection. That is, garbage collection in

which the storage in use is moved to a contiguous region of memory and all

pointers are adjusted to reflect this movement. The resulting list structure

has the same topology as the old, so that re-entrancy and sharing of common

substructure are preserved.

There are several algorithms for doing this for particular list structures.

Algorithms by Minsky (1963) and Fenichel and Yochelson (1969) work for LISP,

i.e., list structure represented by linked blocks of two pointers each.

Algorithms by Hansen (1969) and Cheney (1970) handle one-way list structure

represented as a mixture of linked two-pointer blocks and sequential blocks of

list elements. Each of these algorithms is tailored to a particular class of list

structure and does not generalize to the case of arbitrary nodes. This paper

presents a compactifying garbage collection technique that works on arbitrary

* Also Included as number 5-71 In the publication series of the Harvard Center
for Research ir ComputinR Technology.

nodes, even when pointers point into the middle of nodes. The next section out-

lines the need for such a technique.

Motivation

Typically, a list-processing system offers one data representation for all

structures. For many purposes, this is quite satisfactory. For others, this is

awkward and inefficient. To overcome this, a few languages - e.g., Algol 68

(Wijngaarden, 1969) and ELI (Wegbreit, 1971) - have been developed which allow

the programmer to create his own representations. A programmer might choose

to use rings, two-way lists with back as well as front pointers, threaded lists,

or a mixture of these and conventional two-pointer nodes. Further, he might

choose to have the nodes contain one or more fields containing non-pointer

information: integer counts, complex numbers, character strings, bit vectors,

etc. In general, the programmer is free to define the sorts of objects he needs,

allocate such objects, and link these up as desired. It is useful to ascribe a

data type or mode to each sort of object.

The set of modes permitted by such languages may be described recursively

as including:

1) a fixed set of primitive modes such as integer, real, character, and

Boolean. The actual set of primitives is immaterial so long as there

is a.predicate, SIMPLE, which is true of the primitive modes,

2) pointers to objects whose modes are in this set.

3) structures and arrays whose components have modes belonging to this

set.

Examples of these are:

1') an integer; a character

2') a pointer to an integer; a pointer to an array of Booleans

3') a structure consisting of (an integer) and (a pointer to a structure

like this one) ; a structure consisting of (a real) and (a structure

3

consisting of an integer and an array of characters) .

Since we deal with many different sorts of objects, techniques for

list structure garbage collection carry over only partially and compactification

techniques do not carry over at all. A general purpose garbage collector must

be able to

(A) deal with nonuniform sized objects

(B) trace a pointer embedded in a substructure of an object

(C) handle situations in which several pointers separately reference

both an object and one or more components.

As an illustration of the last problem, it may be that in the last example above,

one pointer references the entire; major structure, while another references

the real, and another references just the amrth character in the character array.

There are a variety of ways of simplifying the problem, but at unacceptable

expensed One can, for example, handle (A) by prefixing each object which can

'Indeed, one can assume the existence of a very large virtual memory in which
compactification is employed principally to increase the percentage of useful
information on each page (i.e., to reduce page faults). In such a situation, one
can reserve a second region as large as the one to be compacted and perform
compactification by copying from one to the other. Hence, compactification is
straightforward. This paper is concerned specifically with the case in which the

•ess space is limited ano reservation of such a second region is unacceptable. aOUr

be pointed to with a type or length code. Similarly, compactification can be

made easy if each object is prefixed by a backpointer to a ring of all those

pointers which point to the object. Alternatively, one can reserve room for the

backpointer but construct the ring only during garbage collection. However,

these simplifications require extra garbage collection fields in each object that

can be pointed to — a price which is unacceptable in view of (C) above. The

technique to be described does not require special garbage collection fields.

The Technique

A non-compactifying garbage collector has two phases: (1) trace through

all reachable structures and mark objects in use, and (2) sweep linearly through

memory collecting the unmarked words. To compactify. phase 2 is replaced by:

(2') £lan where each block of storage in use is to be moved to, (3') adjust each

pointer in use to point to the planned address of the object it references, and

(4') move the contents of each block in use to its planned address.

Since this is more complicated than normal garbage collections, it is useful

to mix the two strategies. That is. most garbage collections are non-

compactifying; the compactifier is used as an option in garbage collection, to

be invoked only when necessary. In view of the relative infrequency of its use,

the compactifying garbage collector need not be overly concerned with speed.

It must, however, make a minimum of demands on storage. It is these two con-

siderations that shape the algorithm presented in this paper.

At the point garbage collection is initiated, there is some active environment.

This typically includes the stack, the machine registers, and certain fixed

locations. The environment specifies the set of base points from which tracing

begins and hence defines all the structures active at the time garbage collection

is initiated. The outermost loop of the garbage collection trace phase is to con-

sider, in turn, each of the base points and initiate a trace from that point. Since

the environment depends on the language and the implementation, we neglect this

outer loop and discuss the action for a single base point P. We assume that for

any base point, one can determine the sort of object it points to. (Typically,

this is implemented by storing with each base point both an address and a type

code for the object pointed to.)

The function of the trace phase is to mark all objects in use. This becomes

complicated where only part of an object is referenced. Given a pointer to an

object, there is no way to know whether the object is part of a larger object and

what that larger object is. Further, since objects as small as a bit can be

pointed to,, there is a problem of how to do the marking. The method used

here is to fix on some minimum block size, a word in most machines, and mark

to the level of refinement but no finer. Hence, if any bits of a word are in use,

the word will be regarded as in use. The choice of quantum unit for marking

cannot, however, be altogether arbitrary; there is one requirement which must

be met. We discuss this after presenting the trace algorithm.

Unlike list-structure systems, there is no way here to do the marking in

the machine word itself. A word may contain a bit vector, an integer, or a real

number, leaving no room for marking bits. Hence, we use a bit map — a vector
■frVi

of bits, one per word. Address arithmetic maps the i word of the free storage

region onto the i element of the bit map. It will prove convenient to use the

Algol 68 term heap as an abbreviation for "free storage region". It will also be

convenient to suppress the existence of the bit map and speak of marking an

object, meaning setting bits corresponding to the addrcss(es) of the object.

To express the trace algorithm, we require some conventions for dealing

with objects of arbitrary data types. The following is a reasonable set, imple-

mentable in almost all systems. An object can be referenced by means of a

pair {A, M) where A is an address and M is the mode (i.e., data type) of the ob-

ject at that address. MARKED (A, M) marks all words of the object referenced

by the pair (A, M). It returns true if all words are already marked; otherwise,

it returns false. OBJ (A, M) is the object at A of mode M. Two generalized

functions are applied to arbitrary objects: ADR (obj) is the address of the object,

MD (obj) is the mode of the object.' Three other functions are applicable to

^Hence, ADR (OBJ (A, M)) = A and MD (OBJ (A, M)) = M for all A and M.

various classes of objects. For any compound object X, LENGTH(X) is the number

of components, and COMPONENT(X,I) is the I component. For any pointer

object X, VAL(X) is the object pointed to. Two functions test for classes of objects.

If M is a data type, SIMPLE(M) is true only if that type is primitive, i.e., neither

a structure, nor an array, nor a pointer. POINTER(M) is true only of pointers.

While tracing one pointer from a compound object, it is necessary to keep a

handle on the object so as to be able to return to it. For this, we use a stack t

^Digressionally, it may be noted that the use of a stack (or equivalently,
recursion) is mandatory. This is not the case in LISP where it is possible to
store all return points in the structure itself by reversing pointers (Schorr
and Waite, 1967). This dispenses with the stack but requires one extra garbage
collection bit per word used to interpret the trace state on return to an object
after having traced either of its pointers. An attempt to apply this technique to
generalized garbage collection fares poorly. Instead of a single bit to determine
the state of tracing within an object, one needs an integer index (see below) .
Further, one needs a type code to determine how to interpret an object. There
is no room to store this information in the structure being traced; storing this
in a map is obviously impractical. Hence, a stack of some sort is required.

PUSH(e . . . e) pushes the values of ej . . . en onto the stack. EMPTY_STACK()

is true if the stack is empty; otherwise false. POP(N1 . .. Nn) pops the top n

items from the stack and assigns these .o the variables Nn ... Nj .

To trace from a base point P, the trace routine initializes A to the address of

and M to the mode of the objecv pointed to by P and executes the following code:

LOOP1: if MARKED(A,M) then goto UP;

LOOP2: if SIMPLE(M) then goto UP;

if POINTER(M) then begin A2 - ADR(VAL(OBJ(A,M)));

M2*- MD(VAL(OBJ(A,M)));

A *- A2;

M - M2;

goto LOOP 1
end;

I - LENGTH(OBJ(A,M));

if 1=0 then goto UP;

LOOPS: if I>1 then PUSH(A,M.I-1);

A2 *- ADR(COMPONENT(OBJ(A,M).I));

M2 - MD(COMPONENT(OBJ(A,M).I));

A - A2;

M - M2;

goto LOOP 2;

UP: if EMPTY STACK() then goto TRACE DONE;

POP(A,M,I);

goto LOOPS

The algorithm begins by marking the referenced object. If the object was

previously marked, no further action need be taken for it. If the object is

SIMPLE (i.e., primitive), no further action need be taken. If the object is a

pointer, it is traced. Otherwise, the object must be a compound object — either

an array or a structure. A compound object is traced by considering its com-

ponents in turn: SIMPLE components are ignored, pointer components are

traced, and components which themselves are compound objects are handled by

recursive decomposition.

Notice what occurs when two pointers, PI and P2, respectively reference

an object and one of its components. If PI is traced first, then the entire object

is marked. Hence, when P2 is traced, the component is found to be marked and

tracing of P2 stops. This occurs even if components of the object remain to be

considered: a triple for the remaining components has been previously stacked

and will be popped in due time.

If, on the other hand, P2 is traced first, then just the words containing the

component are marked. When PI is subsequently traced, the words containing

the other components are found (see below) to be unmarked. Hence, the entire

object is processed, each component in turn. The component pointed to by P2 will

be considered again; however, should this contain a pointer P3, the object pointed

to by P3 will be found to be entirely marked, so that tracing from P3 will not be

repeated.

One difficulty in the last case may arise if the component referenced by P2

is part of a one-word object which contains a pointer not part of this component.

For example, a structure may consist of a character and a pointer; the pointer

P2 may reference the first component — the character — only. When PI is traced,

the entire object will be found to be marked so that the object will not be traced.

Hence, the pointer (the second component) will never be traced, causing an error.

That is, marking the word containing a component masks off any other

components in an object; if the other components are pointers, this causes an

error.

There are two possible solutions. One is to arrange the layout of compound

objects such that if an object (or distinct sub-object) takes one word and contains

a pointer, then it contains nothing else. Another is to observe that the choice of

the word as the unit of marking is too coarse. To avoid the problem, it is

necessary to choose the unit of marking such that a pointer completely fills at

least one marking unit. On most machines, a half-word insures this,if pointers

are justified. If a pointer crosses marking unit boundaries (e.g., lies in two

half-words), both units are marked in tracing. Since it is impossible for a

second pointer to fit into the remainder of the second marking unit, tracing

proceeds safely. In choosing between the two solutions, there is a trade-off to

be made between the size of marking unit and the packing density of compound

objects. The choice is ruled by implementation considerations.

One additional point bears attention. The only reason for considering the

components of a compound object is to discovtr any pointer fields it may contain.

Hence, the algorithm would still work, and work much faster, if SIMPLE was

interpreted to mean "contains no pointers." With this modification, the algo-

rithm marks but otherwise ignores all objects but those containing pointers.

Where compound objects containing no pointers are common, this avoids con-

siderable needless computation and is therefore a very significant improvement.

When the trace phase is completed, all words of the heap (i.e., free storage

region) that are in use have been marked. A contiguous set of marked words

contains at least one and perhaps many distinct objects which must be pre-

served. This must be carried out for both compactifying and non-compactifying

garbage collection. At this point, the two collection algorithms diverge. The

non-compactifying garbage collector forms a free-list' consisting of linked

'While it is possible to use a simple free-list, it is far better to modify this
somewhat. Requests for blocks in the heap come in various sizes. To make it
possible to quickly satisfy a request (or determine that a request cannot be
satisfied), it is useful to maintain a vector of free-lists — one for each of a set
of size intervals. Logarithmically spaced size intervals are appropriate — e.g.,
one for each power of 2. To form the free-lists, the heap is swept linearly.
Words marked as in use are ignored. A contiguous set of unmarked words is
treated as a block. The number of words in the block is recorded in the head of'
each block, the number of leading zeros in the binary representation of the count
is determined, and the block is entered into the appropriate free-list. Each
block contains a pointer to the next block on that free-list.

blocks, each comprising contiguous words not marked as in use. The compacti-

fying garbage collector moves all storage in use into one region of memory to

produce a single free block.

Compactification begins by linearly sweeping the heap to form a free-list

where each block contains a count field containing the number of words in the

block and a pointer to the next block. Since the list is formed by a linear sweep,

the list is ordered by address; c.f., Fig. 1.

The next phase involves planning where the blocks in use will be moved to.

The desired rearrangement of storage blocks depends on system considerations.

Two cases are perhaps most common. (1) Move all blocks in use to low core.

Part of the resulting free block can then be returned to a higher level storage

allocator, e.g., monitor. (2) Move blocks in use away from some region which

must be expanded — e.g., the stack.

In either case, we assume that the blocks in use are to be packed into a

contiguous region starting at location B'. Let B be the starting address of the

heap before compactification. Let S. be the number of words in the i free block.

The compactification algorithm is somewhat simplified if every block in use,

including the first, is preceded by a free block. This can be insured if a small

starting block at location B is specially reserved. This will not be pointed to

from any base point, so it will not be marked during tracing. It will be treated as

free and, hence, merged with any other free words contiguous to it. Let S0 be the

10

size of the starting block and let S. be the size of the complete first free block

(including the starting block). To initialize the bookkeeping so that the starting

block remains reserved, the count field now containing S, is decremented by S».

With this convention, the address adjustment is simple. If the j block in use

iß now at U., its planned address, i.e., iiew address, will be (c.f., Fig. 2)
J

U? = U. + (B'-B) - V S.
J J . „ *

i=l

The relevant variable is the relocation term R. for the i block, i.e., the amount
 3

that the i block must be moved.
j

R. = U' - U. =(B'-B) - T S.
J 3 3 • , 1

i=l

It is clearly useful to set up a data structure which associates the term R. with

the j block in use. The only space guaranteed available is in the preceding free

block. Hence, we use this space. The chain of free blocks is followed. In each

free block, the count field is replaced by R.. That is, S. is replaced by (B'-B)-S1

and for all j > 1, S. is replaced by the new count field of the preceding block minus
J

S.. For example, assuming that B' = B= 1000, we get the situation shown in Fig. 3.
3'» '

The next phase of the compactifying garbage collector is to adjust each pointer

to point to the planned address of the data object it references. That is, each
XL.

pointer into the j block in use must have its word address increased by R.. Note

that the relocation term for a pointer depends only on which block it points to.

Even if there are many distinct, separately allocated objects in a block, the re-

location term for all pointers into the block is the same.

To carry out the pointer adjustment, the compactifier proceeds as follows.

It clears the bit map, then performs a second trace. The second trace phase dif-

fers from the first in that every time a pointer is traced, it is adjusted to point

to the planned location of the object it points to. Since pointers are being adjusted,

it is necessary to insure that no pointer is traced twice in this process; ih** second

trace of a pointer would result in a second, and hence erroneous, adjustment.

Therefore, the algorithm for the second trace phase differs somewhat from that

for the first and requires several additional functions. ALL_MARKED(A,M) does

not mark the object referenced by A and M but merely rclurns true if the object

was previously marked. ALL_CLEAR(A,M) performs no marking and returns

true if no words of the object are marked. MARK(A,M) marks an object but returns

no value. HEADER_MARK(A,M) marks only the header words (if any) of a com-

pound object; it leaves unchanged all words containing only the components.

RELOC(A) returns the relocation term for the block wh.ch includes the address A;

the implementation of this routine is discussed below.

To trace from a base point P, A and M are initialized as before, A is incre-

mented by RELOC(A), and the following code is executed:

LOOPl: if ALL_MARKED(A,M) then goto UP;

LOOP2: if SIMPLE(M) then begin MARK(A,M); goto UP end;

if POINTER(M) then begin MARK(A,M);
A2 *- ADR(VAL(OBJ(A.M)));

M2 *- MD(VAL(OBJ(A,M)));

OBJ(A,M) - OBJ(A,M)+RELOC(A2);

A - A2;

^ , M *- M2; f

goto LOOPl

end;

if ALL_CLEAR(A,M) then begin MARK(AtM); FLAG - 2 end
else begin HEADER MARK(A,M); FLAG ^ lend;

I - LENGTH(A.M);

if 1=0 then goto UP;
LOOP3: if I>1 then PUSH(A,M,I-1,FLAG);

A2 *- ADR(COMPONENT(OBJ(A,M), I»;

M2 - MD(COMPONENT(OBJ(A,M),I));

A - A2;

M«- M2;

if FLAG = 1 then goto LOOPl else goto LOOP2;

UP: if EMPTYJ3TACK() then goto TRACE2J50NE;

POP(A.M,I,FLAG);

goto LOOP 3

12

The second trace algorithm is similar to the first in the case of SIMPLE

objects. POINTERS are relocated but otherwise treated as before. Compound

objects such that no components have yet been considered are treated as before -

i.e., the entire object is marked, thereby locking out entry when tracing other

pointers. Compound objects, where one or more but not all components have boon

previously marked, are handled specially. The entire object is not marked;

instead, a flag is set so that testing and marking are performed when the indi-

vidual components are considered. The flag is stacked as part of the return point.

Notice what occurs now when two pointers, PI and P2, respectively refer-

ence an object and one of its components. If PI is traced first, the object is

marked, correctly locking out the trace via P2. If P2 is traced first, the com-

ponent is marked; hence, when tracing PI the object is not found to be

ALL_CLEAR. Only the header (if any) is marked and the flag is set. As each

component of the object is considered, the algorithm tests whether that com-

ponent is marked. The component referenced by P2 is found to be marked in

this step, so it is not erroneously traced and relocated a second time.
^ i

This leaves the question of how to implement RELOC. Given a pointer to an

address A, it is necessary to find the first free block immediately preceding A.

Since the free blocks are linked, this could be carried out by searching the chain,

a process which on the average would require half as many steps as free blocks.

The search can be speeded up considerably with a directory of the free-list. Let

the heap size be H and let the entries in the directory be designated 0, 1, 2,... , k.

Then the ith element of the directory contains the address of the first free block

in the address region B + [H*i/kJ to B + [H*(i+l)/kJ if such a block exists; other-

wise, it contains the address of the last free block preceding B + [H*i/kj. Hence,

^'ven an address A, the [(A-B)*k/HJ entry of the directory gives the free list

entry at which to start the search. If the free blocks are spread uniformly, this

speeds up the search by a factor of k; a nonuniform spread results in a

speed-up by some factor less than k.

The directory requires a contiguous block of storage for k+ 1 entries. The

larger the block, the better the speed-up in the modified free-list search. Any

large block of storage available in the system may be pressed into service,

e.g., unused stack space, I/O buffers, etc. One candidate which will always be

available is the heap itself. That is, the block for the directory can be con-

structed in the largest block in the free-list. It is necessary to keep only the

count field and the field used for the free-list pointer - the rest can be used for

the directory. This is attractive since it requires no extra storage, works

under any conditions, but works faster when a large block is available. However,

it should be recalled that compactification is generally triggered by failure of

the normal garbage collection to find a sufficiently large block. Unless one

attempts anticipatory compactification, compactification is the time when the

desired large block will be unavailable.

An alternative to the directory is a binary tree constructed from the free

blocks. Given an address of an object in a used block and a node in the tree,

address arithmetic can be used to determine whether (1) the node covers the

address (i.e., this is the appropriate free block for that addres«), (2) the u£

link of the node is to be followed to a node higher in the address space, or

(3) the down link is to be followed to an entry lower in the address space. If the

binary tree is complete and balanced, then with n free blocks, it will take at

most flog« n] steps to find the appropriate node for any address. Constructing

such a binary tree is straightforward. However, each node in the tree requires

storage for two pointers and a covering address (in addition to a count field).

The smallest free blocks may not be able to accommodate all these. Hence, a

mixed strategy is called for. The binary tree can be built for the first m<n

choice levels only, its nodes constructed from the larger free blocks. Following,

the binary tree yields either a node or a start point in the free-list from which

14

point the list can be scanned by following the pointer chain.

The final phase is the actual moving of blocks. As all pointers have been

corrected, it remains only to copy the blocks to their new locations. Since the

copying is done by blocks of adjacent words in use, the number of distinct copy

set-ups will be substantially smaller than the number of objects being handled.

If B' ^ B, all the relocation terms will be negative and moving blocks is straight-

forward. The heap is swept linearly. The jth block, at location U., is copied to
J

U. +R.. Most machines have a "block transfer" or "move long" instruction for
J J

the actual copy operation. However, if B' > B then one or more of the initial re-

location terms, say Rj . . . R , may be positive. This will typically occur when

the heap elements are being moved down in core to allow the stack to grow. The

corresponding blocks must be moved in reverse order, p to 1, so as to prevent

overwriting needed information. Further, some of the first blocks moved in this

process must themselves be copied in reverse order (last word copied first),

again so as to prevent overwriting.

When the block-moving phase is finished, the heap has been reorganized so

that words in use form a contiguous block, pointers have been adjusted to reflect

this reorganization, and non-pointer information remains unchanged. Compacti-

fying garbage collection is therefore complete.

Summary

The technique presented in this paper emphasizes generality of application

and parsimony of storage. It collects and compactifies structures and arrays of

both pointer and non-pointer fields, requiring no reserved garbage collection

fields. It requires only a single bit map and a stack of resumption points. It

works correctly for arbitrary re-entrant structure, even where pointers puint

into components within an object. Where only individual components of an object

are in use, it preserves these components and reclaims the words containing only

the other components. Compactification is an option which requires no additional

storage. When employed, it compacts all storage actually in use into a

contiguous region, producing a single block of all free storage in the heap.

References

CHENEY, C. J. (1970). A Nonrecursive List Compacting Algorithm,
Communications of the ACM, Vol. 13, pp. 677-678.

FENICHEL, R. R. and YOCHELSON, J. C. (1969). A LISP Garbage-Collector
for Virtual-Memory Computer Systems, Communications of the ACM,
Vol. 12, pp. 611-612.

HANSEN, W. J. (1969). Compact List Representation: Definition, Garbage
Collection, and System Implementation, Communications of the ACM,
Vol„ 12, pp. 499-507.

MCCARTHY, J. et al. (1962). Lisp 1.5 Programmer's Manual.
Cambridge, Massachusetts: The M. I. T. Press.

MINSKY, M. L. (1963). A LISP Garbage Collector Algorithm Using Serial
Secondary Storage, M.I.T. Artificial Intelligence Project, Memo 58,
Cambridge, Massachusetts.

SCHORR, H. and WAITE, W. M. (1967). An Efficient Machine-Independent
Procedure for Garbage Collection in Various List Structures, Communi-
cations of the ACM. Vol. 10, pp. 501-506.

WEGBREIT, B. (1971). The ECL Programming System, Proceedings Fall
Joint Computer Conference 1971, Vol. 39.

WIJNGAARDEN, A. V. et al. (1969). Report on the Algorithmic Language
ALGOL 68, Mathematisch Centrum, Amsterdam, MR 101.

1(.

Start of free list

in use

in use

in use

in use

null

in use

Fig. 1 Free list

17

CURRENT LAYOUT PLANNED LAYOUT

B

U,

U2

U3

U4

Us

starting block

in use-block

_ in use-block2

in use-block 3

__ in use-block4

in use-blocks

\
\

N
\
\

/
/

S
s

s
y

'ZS

//
/

' /

y
/

/
/

/
/

block.

block«

block:

block,

blocks

B'

U

U

U3

Ula

U'

Fig. 2 Planned compactification

in

B

U,

-4

U2

-7

U3

-9

U,

-12

U.

CURRENT

in use

in use

in use

m use

in use

CORE ADDRESS

1000

1002

1005 ,/*

1007 ^/\
s /

1009/

1010 /'
/ '-

/ / '
V //

/ 1014
/ nois /
'' //

/
/

/

/

1019

/ /

f

/ / /
/ /

/ 1027
/

PLANNED

free storage

B

U

U:

u;

u

u

Fig 3 Example with B = B

